Using Collektive with Alchemist Simulator
Alchemist Simulator is a distributed systems simulation platform, particularly suited for aggregate programming. It allows you to model and simulate interactions between agents in complex environments, supporting different abstractions and programming paradigms.
Together, Alchemist and Collektive allow you to write aggregate programs in Kotlin that can be executed and simulated within dynamic and configurable environments through YAML files.
YAML configuration file for Collektive
The YAML files define a Collektive simulation run through Alchemist. Below is how it is composed.
Incarnation
incarnation: collektive
incarnation
specifies the programming "dialect" used for the simulation. In this case, we use collektive
.
Network model
network-model:
type: ConnectWithinDistance
parameters: [2]
network-model
defines how nodes communicate with each other. Here we use ConnectWithinDistance
, a pattern that connects nodes that are at most 2 units apart.
Program definition
_pool: &program
- time-distribution: 1
type: Event
actions:
- type: RunCollektiveProgram
parameters: [it.unibo.collektive.examples.tutorialExample.TutorialExampleKt.maxID]
This section defines the program to be executed. The program is executed as an Event
with a time distribution of 1 unit. The executed action is the Collektive program maxID
.
Nodes deploy
deployments:
- type: GraphStreamDeployment
parameters: [20, 2, 0, PreferentialAttachment]
programs:
- *program
GraphStreamDeployment
is used to create a network of 20 nodes with connectivity based on PreferentialAttachment
. Each node runs the previously defined Collektive program.
Initial state of the nodes
contents:
- molecule: isMaxID
concentration: true
...
molecule
are variables associated with nodes, with an initial concentration. For example:
isMaxID
: indicates whether the node has the maximum ID, the value of this variable is initialized totrue
, before starting the simulation all nodes will therefore have this variable equal totrue
.
Data export
export:
- type: CSVExporter
parameters:
fileNameRoot: "tutorial-example"
exportPath: "data"
CSVExporter
saves simulation data in CSV format, with an export interval of 1 time unit.
Click to view full YAML code
incarnation: collektive
network-model:
type: ConnectWithinDistance
parameters: [2]
_pool: &program
- time-distribution: 1
type: Event
actions:
- type: RunCollektiveProgram
parameters: [it.unibo.collektive.examples.tutorialExample.TutorialExampleKt.maxID]
deployments:
- type: GraphStreamDeployment
parameters: [20, 2, 0, PreferentialAttachment]
programs:
- *program
contents:
- molecule: isMaxID
concentration: true
- molecule: isMaxLocalID
concentration: true
- molecule: localID
concentration: 0
- molecule: maxNeighborID
concentration: 0
- molecule: maxNetworkID
concentration: 0
- molecule: subnetDiameter
concentration: null
- molecule: distanceToSource
concentration: 0
- molecule: isSubnetDiameterDistance
concentration: true
- molecule: nothing
concentration: true
- molecule: subnetDiameterValue
concentration: 0
export:
- type: CSVExporter
parameters:
fileNameRoot: "tutorial-example"
interval: 1.0
exportPath: "data"
data:
- time
- molecule: subnetDiameterValue
aggregators: [ mean ]
value-filter: onlyfinite
precision: 1
Once the YAML configuration file has been created, it is necessary to generate a corresponding JSON file, named identically to the configuration file, in order to specify the graphical effects that will be used to display the components described in the YAML configuration file.
Click to view effects code
[
{
"type": "class it.unibo.alchemist.boundary.gui.effects.DrawShape",
"curIncarnation": "collektive",
"mode": "FILL_ELLIPSE",
"red": {
"max": 255,
"min": 0,
"val": 250
},
"blue": {
"max": 255,
"min": 0,
"val": 200
},
"green": {
"max": 255,
"min": 0,
"val": 50
},
"alpha": {
"max": 255,
"min": 0,
"val": 255
},
"scaleFactor": {
"max": 100,
"min": 0,
"val": 50
},
"size": {
"max": 100,
"min": 0,
"val": 10
},
"molFilter": true,
"molString": "isSubnetDiameterDistance",
"molPropertyFilter": true,
"property": "if (it \u003d\u003d true) 1 else 0",
"writingPropertyValue": false,
"c": "ALPHA",
"reverse": false,
"propoom": {
"max": 10,
"min": -10,
"val": 0
},
"minprop": {
"max": 10,
"min": -10,
"val": 0
},
"maxprop": {
"max": 10,
"min": -10,
"val": 1
},
"colorCache": {
"value": -65536
}
},
{
"type": "class it.unibo.alchemist.boundary.gui.effects.DrawShape",
"curIncarnation": "collektive",
"mode": "FILL_ELLIPSE",
"red": {
"max": 255,
"min": 0,
"val": 0
},
"blue": {
"max": 255,
"min": 0,
"val": 255
},
"green": {
"max": 255,
"min": 0,
"val": 0
},
"alpha": {
"max": 255,
"min": 0,
"val": 255
},
"scaleFactor": {
"max": 100,
"min": 0,
"val": 50
},
"size": {
"max": 100,
"min": 0,
"val": 5
},
"molFilter": true,
"molString": "nothing",
"molPropertyFilter": true,
"property": "if (it \u003d\u003d true) 1 else 0",
"writingPropertyValue": false,
"c": "ALPHA",
"reverse": false,
"propoom": {
"max": 10,
"min": -10,
"val": 0
},
"minprop": {
"max": 10,
"min": -10,
"val": 0
},
"maxprop": {
"max": 10,
"min": -10,
"val": 1
},
"colorCache": {
"value": -65536
}
},
{
"type": "class it.unibo.alchemist.boundary.gui.effects.DrawShape",
"curIncarnation": "collektive",
"mode": "FILL_ELLIPSE",
"red": {
"max": 255,
"min": 0,
"val": 255
},
"blue": {
"max": 255,
"min": 0,
"val": 0
},
"green": {
"max": 255,
"min": 0,
"val": 0
},
"alpha": {
"max": 255,
"min": 0,
"val": 255
},
"scaleFactor": {
"max": 100,
"min": 0,
"val": 50
},
"size": {
"max": 100,
"min": 0,
"val": 15
},
"molFilter": true,
"molString": "isMaxLocalID",
"molPropertyFilter": true,
"property": "if (it \u003d\u003d true) 1 else 0",
"writingPropertyValue": false,
"c": "ALPHA",
"reverse": false,
"propoom": {
"max": 10,
"min": -10,
"val": 0
},
"minprop": {
"max": 10,
"min": -10,
"val": 0
},
"maxprop": {
"max": 10,
"min": -10,
"val": 1
},
"colorCache": {
"value": -65536
}
},
{
"type": "class it.unibo.alchemist.boundary.gui.effects.DrawShape",
"curIncarnation": "collektive",
"mode": "FILL_ELLIPSE",
"red": {
"max": 255,
"min": 0,
"val": 0
},
"blue": {
"max": 255,
"min": 0,
"val": 0
},
"green": {
"max": 255,
"min": 0,
"val": 255
},
"alpha": {
"max": 255,
"min": 0,
"val": 255
},
"scaleFactor": {
"max": 100,
"min": 0,
"val": 50
},
"size": {
"max": 100,
"min": 0,
"val": 15
},
"molFilter": true,
"molString": "isMaxID",
"molPropertyFilter": true,
"property": "if (it \u003d\u003d true) 1 else 0",
"writingPropertyValue": false,
"c": "ALPHA",
"reverse": false,
"propoom": {
"max": 10,
"min": -10,
"val": 0
},
"minprop": {
"max": 10,
"min": -10,
"val": 0
},
"maxprop": {
"max": 10,
"min": -10,
"val": 1
},
"colorCache": {
"value": -65536
}
},
{
"type": "class it.unibo.alchemist.boundary.gui.effects.DrawShape",
"curIncarnation": "collektive",
"mode": "DRAW_ELLIPSE",
"red": {
"max": 255,
"min": 0,
"val": 0
},
"blue": {
"max": 255,
"min": 0,
"val": 255
},
"green": {
"max": 255,
"min": 0,
"val": 115
},
"alpha": {
"max": 255,
"min": 0,
"val": 154
},
"scaleFactor": {
"max": 100,
"min": 0,
"val": 49
},
"size": {
"max": 100,
"min": 0,
"val": 5
},
"molFilter": true,
"molString": "it.unibo.collektive.examples.tutorialExample.TutorialExampleKt.maxID",
"molPropertyFilter": true,
"property": "",
"writingPropertyValue": true,
"c": "ALPHA",
"reverse": false,
"propoom": {
"max": 10,
"min": -10,
"val": 0
},
"minprop": {
"max": 10,
"min": -10,
"val": 0
},
"maxprop": {
"max": 10,
"min": -10,
"val": 10
},
"colorCache": {
"value": -1711246337
}
}
]
The codes illustrated represent the entire configuration used for the graphical simulation of the example examined in the previous section. Below is presented the graphical simulation obtained from the configuration.
Graphical simulation
On the left, the network of nodes is displayed with the connection edges hidden, while on the right, the network is shown with the edges between the nodes, from which the interconnection of the network can be observed.
The molecules with Boolean concentration have been used to assign different colors to the nodes based on their role:
- Green nodes are those with the highest ID within a subnet.
- Red nodes are those with the highest ID within their neighborhood, but where a node with a higher ID has been identified within the neighborhood of their neighbors.
- Purple nodes are those located farther from the nearest green node.
- Blue nodes are those that do not fall into any of the previous categories.
- Finally, the labels of the nodes correspond to the maximum ID value identified by each node, allowing for the distinction of three subnets (identified by the ID of the green nodes) and the nodes belonging to each subnet.
Selecting a node opens a window where it is possible to view the current value of the molecules and the value returned by the function specified in the parameters of the YAML configuration file.
This graph shows the average of the maximum distance of the three subnets, which evolves over time as defined in the YAML configuration file. However, to generate this graph, it is not sufficient to specify it in the YAML configuration file. Its definition involves the creation of a CSV file, from which, through a Python script, the graph shown in the figure is generated.
Below is presented the example code, including the logic for Alchemist Simulator.
fun Aggregate<Int>.maxID(environment: EnvironmentVariables): Int {
val maxLocalValue = maxNeighborID()
// Collektive & Alchemist: Assign the result to a molecule
environment["localID"] = localId
environment["isMaxLocalID"] = localId == maxLocalValue
environment["maxNeighborID"] = maxLocalValue
// Step 1: Exchange the maxNeighborID with neighbors and obtain a field of values
val neighborValues = neighboring(local = maxLocalValue)
// Step 2: Find the maximum value among neighbors (including self)
val maxValue = neighborValues.max(base = maxLocalValue)
// Collektive & Alchemist: Assign the result to a molecule
environment["isMaxID"] = localId == maxValue
environment["maxNetworkID"] = maxValue
/* Third part */
// Preliminary step: the distance from the nearest source is calculated using the distanceTo library function
environment["distanceToSource"] = distanceToSource(environment["isMaxID"])
// Calculate subnets diameter
val subnetDiameterValue = subnetDiameter(environment["maxNetworkID"], environment["distanceToSource"])
// Collektive & Alchemist: Assign the result to a molecule
environment["subnetDiameter"] = subnetDiameterValue
val subnetDiameterDistance = subnetDiameter.distance
// Collektive & Alchemist: Assign the result to a molecule
environment["subnetDiameterValue"] = subnetDiameterDistance
environment["isSubnetDiameterDistance"] = subnetDiameterDistance == environment["distanceToSource"]
environment["nothing"] = !(environment["isSubnetDiameterDistance"] || environment["isMaxID"] || environment["isMaxLocalID"])
return maxValue
}
The results derived from the calculations are assigned to the molecules, thus updating the value of their concentration.